If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+16x=298
We move all terms to the left:
x^2+16x-(298)=0
a = 1; b = 16; c = -298;
Δ = b2-4ac
Δ = 162-4·1·(-298)
Δ = 1448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1448}=\sqrt{4*362}=\sqrt{4}*\sqrt{362}=2\sqrt{362}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{362}}{2*1}=\frac{-16-2\sqrt{362}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{362}}{2*1}=\frac{-16+2\sqrt{362}}{2} $
| 8/7+7/2z=2 | | 8^2x-7=128 | | 6y+7y=1/8+1/10 | | z-(-16)=12 | | 8.3x-6.2=35.3 | | 35+y=627 | | -16=8=s | | 2/3+1/4=g | | x/1.5=12 | | 81.9=9(m+2.2) | | 2d+9=7 | | 12n^2-72n+108=0 | | -32=8(1-x) | | -16=q-11 | | -.006875=1/x^2 | | 17=-14+k | | 8-7(-3n-1)=-4n+15 | | x/3-16=22 | | ∠A=6x−18∘ | | x/2+18=30 | | 17(x+2)=104 | | -101=-6+5k | | -1=-18=n | | -0.63x+0.43x=6.3 | | 4(x-4)-48=6(6-x)-3(x-10 | | 6=(10n+7) | | (3+r)=2r+4 | | 4/82x/24=17 | | 4x+3=10x-105 | | x2-2=x+64 | | 5/8c−8=12 | | 58c−8=12 |